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Abstract. We introduce vector phase states for multipath quantum interferometry and construct
the vector phase positive operator-valued measure. We calculateSU(3) phase distributions for
three-path quantum interferometry and discuss measurement limits.

1. Introduction

Precise interferometric measurements of phase shifts are important for many applications, yet
complementarity between particle number and phase limits the amount of information which
can be extracted from the interferometer [1]. These limits are well understood in the context of
two-path interferometry, but the development of multipath quantum interferometers (MQI) [2]
raises issues about the bounds to estimating simultaneous multiple phase shifts [3, 4]. Our
aim is to establish rigorous bounds on estimating this multiple phase shift. Specifically, we
(1) employ theSU(N) group to describe the interferometer and identify the Fock basis for the
input state with the (Cartan) weight basis, (2) develop theSU(N) ‘vector phase’ state (VPS) as
the dual basis to the weight states [5], (3) present a class of MQI designs for which a ‘rotated’
VPS basis is translated by MQI, (4) determine ‘vector phase’ distributions for states which can
be studied via parametric estimation theory, (5) establish the relation between bounds on vector
phase measurement in connection with the Fisher information matrix [6], and (6) calculate and
plot SU(3) vector phase distributions.

Lie group theory provides the natural language for describing interferometry as a set of
unitary transformations. For a single-mode field, it is sufficient to introduce the annihilation and
creation operators,a anda†, plus the identity operator, which together span the Heisenberg–
Weyl (HW) algebra. The Fock number states{|n〉} are eigenstates of the unitary phase-shift
operator

exp(iφa†a). (1.1)

Whereas the Fock state is an eigenstate of the phase-shift operator (1.1), the unnormalized
phase state [1,7]

|θ〉 =
∞∑
n=0

einθ |n〉 (1.2)
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is translated to|θ + φ〉 by this unitary phase-shift operation. Consequently, the phase state
basis is dual to the Fock basis, in the same sense that the position and momentum bases are
dual, and the phase basis allows rigorous bounds to be established on the information which
can be extracted by phase measurements [8].

Optimal extraction of phase-shift information corresponds to application of the
infinitesimal positive-operator valued measure (POVM) [9] dE(φ) = |φ〉〈φ| dµ(φ) with
dµ(φ) a measure that guarantees normalization of the POVM and ensures that dE(φ) is a
resolution of the identity. Although not directly measurable in practice, the POVM has proven
useful in establishing ultimate bounds to the information which can be extracted by any phase
measurement.

Recognizing that passive, linear interferometry involves the mixing of at least two fields via
SU(2) optical elements [2,10], a (scalar) phase POVM forSU(2) has been introduced [11,12].
In this approach, an arbitrary input state can be decomposed into a direct sum of states in distinct
finite irreducible representations (irreps). In a lossless two-path quantum interferometer,
particle number is conserved, andSU(2) symmetry is preserved at each interferometer
element [10].

Here we extend theSU(2) analysis to analyse vector phase measurement for MQI, which
is characterized by anSU(N) symmetry [2]. We applySU(N) transformations to the study of
SU(3) quantum interferometry in general, and symmetricSU(N) interferometry in particular.
ForN = 3, we calculate and plotSU(3) vector phase distributions for certain states and study
the scaling of the distribution widths with respect to the irrep parameter.

2. The interferometer transformation and representations

Lie group theory is applicable because we can treat the lossless system as a system which
conserves particle number. This conservation law is a consequence of theSU(N) symmetry
of the interferometer, and this conservation principle applies at each of the optical elements.
These elements can mix two fields together (labelled, for example, ask andl) or act on just
one field to shift the phase. As particle number is conserved at each passive, linear, lossless
optical element, it is convenient to introduce the Hermitian operators

Mk
k = a†

kak

Ml
k = a†

kal + a†
l ak

Mk
l = i(a†

kal − a†
l ak)

(2.1)

for k < l 6 N , where{(ak, a†
k )|k ∈ ZN } are the field annihilation and creation operators.

The unitary transformation, corresponding to a passive, linear, lossless optical element
(including a beam splitter, a mirror and/or a phase shifter), can thus be expressed as [10]

Rlk(Ω) = exp{iθ · (Ml
k,M

k
l ,M

k
k −Ml

l )}. (2.2)

The 50/50 beam splitter corresponds toRlk(π/4, 0, 0) and the phase shifter toRlk(0, 0, θ) (for
the mirrorθ = π ). An arbitrarySU(N) transformation can be expressed as

I(ϒ) = exp

(
i

N∑
k,l=1

ϒk
l M

l
k

)
(2.3)

with realN ×N matrixϒ . This transformation can be decomposed into a sequence ofSU(2)
transformations [2,13] indicating that a quantum interferometer consisting entirely ofSU(2)
elements can realize an arbitrarySU(N) quantum interferometer. The decomposition of the
transformation (2.3) into a sequence ofSU(2) transformations is not unique.
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The unitary operator (2.3) thus describes any passive, linear, lossless interferometer
transformation of an input state into an output state. There areN2−1 independent coefficients
ϒk
l in the exponent of (2.3) which are determined by parameter choices for the optical elements.

We assume that the beam splitter reflectivities are completely known, and the unknown
parameters, which will be estimated, are theN − 1 phase shifts in each path of the quantum
interferometer. These unknown phase shifts are represented by an (N−1)-dimensional ‘vector
phase’φ = (φi), with 0 6 φi < 2π . That is, the vector phase is confined to a hypertoroidal
domainS1× S1× · · · × S1.

Although there areN − 1 distinct Casimir operators forSU(N), the specification of the
normalized particle number sum

S = N−1
N∑
k=1

Mk
k (2.4)

is sufficient to determine an irreducible representation as theN -field state consists solely of
bosons: only the symmetric irreducible representation appears. The Cartan subalgebra of
SU(N) is spanned byN − 1 linearly independent components of the operatorh

hn = Mn
n −Mn+1

n+1 16 n < N − 1. (2.5)

For a given irrep (determined byS), we introduce the orthonormal basis{|sm〉} such that

S|sm〉 = s|sm〉 h|sm〉 =m|sm〉 (2.6)

with m the (N − 1)-dimensional weight vector. The connection between theN -field Fock
state|n〉 and the weight basis is obtained by identifying

s = N−1
∑
ν

nν mk = nk − nk+1 (2.7)

for k ∈ ZN−1. We now have a representation ofN -field interferometry as anSU(N)
transformation with a bijective mapping between the Fock basis ofN fields and the weight
basis.

An arbitrary pure input state has the form

|ψ〉 =
∑
s{m}

ψsm|sm〉. (2.8)

Typically, an input state will not have a fixeds and instead will have support from many irreps.
For example, the coherent state entering one input port and the vacuum state entering all the
otherN − 1 input ports [4] can be expressed as

|α0〉 = exp{−|α|2/2}
∞∑

Ns=0

(
αNs/

√
(Ns)!

)
|ss〉 (2.9)

where|ss〉 is a state of highest weight and the productNs is an integer. On the other hand, the
extension of the multiple Fock state input|n, n, . . . , n〉 [11,14,15] forN fields corresponds to
the input state|s0〉.

The matrix elements of the unitary operator (2.3) correspond to theSU(N) WignerD
functions

〈sm′|(ϒ)sm〉 = s [I(ϒ)]m
′
1m
′
2...m

′
N−1

m1m2...mN−1 (2.10)

with

|(ϒ)sm〉 ≡ I(ϒ)|sm〉. (2.11)

ForSU(2),

h1 = 2Jz = M1
1 −M2

2 (2.12)
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and

M1
2 = 2Jx M1

2 = 2Jy J 2 = S(S + 1). (2.13)

The spectrum of the scalar parameterm is

m ∈ {−s,−s + 1, . . . , s}. (2.14)

The weights can be viewed as equally spaced steps on a ladder. We can also use the more
commonSU(2) notation for the weight basis as|jµ〉, for j = s andµ = m.

For SU(3), the weights are embedded in a two-dimensional space. Fors = n/3, andn
an integer, the weights are given by

{m}n = {(n1− n2, n2 − n3)} (2.15)

with ni > 0 andn1 + n2 + n3 = n. The cardinality of this set is

Cs = (n + 1)(n + 2)/2= (3s + 1)(3s + 2)/2. (2.16)

For generalSU(N), WignerD functions can be calculated by working with matrices in a
specified irrep, but obtaining general explicit expressions for arbitrarys is challenging. We
have developed MathematicaTM computer programs for calculatingSU(3) transformations for
arbitrary representations following the methods of Roweet al [13].

3. Vector phase representation

In considering rigorous bounds for extracting vector phase information, the first step is to
determine theSU(N) basis which is translated by the unitary interferometer transformation
(2.3) for an arbitary phase-shift vectorφ. This task is made easier by restricting attention to the
category of interferometric experiments which we designate ‘symmetric MQI’ and define by
equation (3.1) below. This nomenclature is distinct from that of symmetric multiports which
correspond to linearSU(N) transformers such that an incoming photon has an equal likelihood
of exiting from each of theN output ports [16].

We consider the interferometer transformation (2.3) as a three-stage process. The first
step,D, transforms the input field into a new state and can be anySU(N) interferometric
transformation of the type (2.3).

In the second stage, an arbitrary phase transformationP(φ) ≡ exp(iφ · h) acts on the
N paths. Finally, the field undergoes a mixing which is the reverse ofD. Thus, the unitary
transformation for the symmetric MQI has the general form

I(φ, ϒ) = D†(ϒ)eiφ·hD(ϒ) = I†(−φ, ϒ)
= exp{iφ · [e−i

∑
ϒk
l M

l
khei

∑
ϒk
l M

l
k ]} (3.1)

for some realN × N matrix ϒ . This restriction to a symmetric MQI is quite reasonable.
For example, the unitary operator for the (two-field) balanced Mach–Zehnder interferometer
[10–12], depicted in figure 1(a), is

I
(
φ,

[
0 π/4
0 0

])
= e−i(π/4)M1

2 e−iφh1ei(π/4)M1
2

= exp(2iφM1
2). (3.2)

The infinitesimal POVM for ideal vector phase measurement corresponding to the
symmetric MQI (3.1), restricted to a particular irrep parametrized bys, of dimensionCs ,
is

dEs(θ) = |(ϒ)sθ〉〈(ϒ)sθ| dµ(θ) (3.3)
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Figure 1. Symmetric (a) SU(2) and (b) SU(3) interfer-
ometers for measuring scalar and two-dimensional vec-
tor phase, respectively. The input fields are at the bottom
and the output fields at the top of the diagram. The ver-
tical lines represent 50/50 beam splitters, and the circles
represent phase shifters which induce an arbitrary phase
shift of φn in armn.

where

|(ϒ)sθ〉 = C−1/2
s

∑
{m}

exp{i[(n1− n2)θ1 + (n2 − n3)θ2]}D†(ϒ)|sm〉 (3.4)

is anSU(N) VPS,

dµ(θ) = Cs
(2π)N−1

dN−1θ (3.5)

and {m} is the set of weights for the symmetric representation ofSU(N) parametrized by
s. We emphasise that the set of phase states (3.4) is not the dual basis to the weight basis of
h but rather dual to the ‘rotated’ weight basis|(ϒ)sm〉. This SU(N) ‘rotation’ is essential
to guarantee that the VPS is indeed translated by the unitary interferometer transformation
operator (3.1).

The phase state (3.4) reduces to the rotatedSU(2) phase state forN = 2 [11, 17]. An
orthonormal basis for the Hilbert space can be constructed withCs orthonormal phase states.
The matrix element connecting the weight basis and (3.4) is given by

〈(ϒ)sθ|sm〉 = C−1/2
s

∑
{m′}

e−im′·θ〈sm′|D(ϒ)|sm〉. (3.6)

The phase distribution for an arbitrary input state (2.8) is given by

dPs(θ) = Cs
(2π)N−1

∣∣∣∣∑
{m}

ψsm〈(ϒ)sθ|sm〉
∣∣∣∣2 dN−1θ. (3.7)

That is, the vector phase distribution is obtained from the phase representation of the state
by squaring the modulus of the overlap between the state and a vector phase state, and then
normalizing. In general, the coefficients{ψsm} are calculated via the conversion formula from
the Fock basis to the weight basis. The phase distribution for the output state is given by
Ps(θ|φ) = Ps(θ−φ). This distribution can be used then to determine the ultimate bounds on
estimating the induced vector phase shiftφ.

One method for determining bounds to extracting phase-shift information is by the Fisher
information method [8]. However, for vector phase, the Fisher information must be replaced
by the Fisher information matrix, which is given [6] by

Fs = Cs
(2π)N−1

∫
dN−1θ Ps(θ|φ)[∇ lnPs(θ|φ)] × [∇ lnPs(θ|φ)]. (3.8)
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In equation (3.8),× indicates the outer product of vectors and∇ is the (N − 1)-dimensional
gradient with respect toθ. ForF−1 the inverse of the Fisher information matrix (3.8) and
δφ the uncertainty in the estimate ofφ, the products of uncertainties are bounded from below
according to the requirement that the matrix

δφ× δφ− F−1 (3.9)

is positive definite and× once again denotes the outer product of vectors.
Expression (3.8) can be simplified by noting that the phase distribution is translated by

the interferometer transformation. Hence,Ps(θ|φ) = Ps(θ − φ). Consequently, the Fisher
information matrix is independent ofφ. That the Fisher information is independent of the
applied phase shift in the interferometer should not be surprising. The choice of the vector
phase POVM is designed to produce this result.

In contrast, phase information which is obtained via particle counting [4,18] corresponds to
phase-shift estimates via weight-basis distributions. In analyses of limits to phase information
extraction via particle counting, the weight basis is paramount, but our objective has been to
obtain equation (3.8), which establishes the absolute,in principle, bound to extracting phase
information from the system with or without particle counting methods.

4. The symmetricSU (3) interferometer

An example of symmetric three-field MQI is shown in figure 1(b). The three input beams
at the bottom of the diagram are directed into two beam splitters where they are mixed in a
symmetric way, then subjected to phase shifts (each beamk, for k = 1, 2, 3, is subjected to a
phase shiftφk, respectively) and finally directed to two more beam splitters before exiting the
system. The unitary transformation for the three-beam interferometer in figure 1(b) is given
by

I(φ) = e−iπM2
3/4e−iπM1

2/4eiϕ·heiπM1
2/4eiπM2

3/4 (4.1)

with

ϕ = (φ1− φ2, φ1/2 +φ2/2− φ3) (4.2)

up to a global phase factor8 = φ1 + φ2 + φ3.
A detailed study of theSU(3) interferometer helps to clarify the case ofSU(N)

interferometry. Let us rewrite the interferometer transformation (4.1) using the notation of
equation (3.1)

I(φ) = D†eiϕ·hD (4.3)

for

D = eiπM1
2/4eiπM2

3/4. (4.4)

The desired VPS is

|(ϒ)sθ〉 = 2√
(3s + 1)(3s + 2)

∑
m

eim·θD†(ϒ)|sm〉 (4.5)

and a pure state|ψ〉 with fixed s has a phase distribution

dPs(θ) = (3s + 1)(3s + 2)

2(2π)2
|〈(ϒ)sθ|ψ〉|2 dN−1θ

=
∣∣∣∣∑
m′

e−im′·θ〈sm′|D(ϒ)|sm〉
∣∣∣∣2 dN−1θ

2π2
. (4.6)
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We consider specifically two input states. For both states,s is restricted to being an integer.
The first is the highest-weight state|ss〉, which has all particles entering just one of the three
input ports. The second state under consideration is the balanced state|s0〉, which has an equal
number of particles entering each input port.

The algorithm for calculating matrix elements ofD is provided in [13]. A generalSU(3)
transformation is written as

D(α1, β1, γ1, α2, β2, α3, β3, γ3) = R3
2(α1, β1, γ1)R2

1(α2, β2, α2)R3
2(α3, β3, γ3) (4.7)

with

Rji (α, β, γ ) = eiα(Mi
i−Mj

j )/2eiβMi
j /2eiγ (Mi

i−Mj

j )/2 (4.8)

Figure 2. Vector phase distributionsP for (a) the highest-weight state|ss〉 and (b) the balanced
state fors = 12 (36 photons). For angles outside of the range shown, the vector phase distribution
is given byP(θ1 + π, θ2 + π) andP(θ1 + 2π, θ2 + 2π) = P(θ1, θ2).
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Figure 3. Vector phase distributions for the highest-weight state|ss〉 for θ1 = 0 and 3s ∈
{24, 36, 48, 60, 90, 120} photons.

the usual factorization of anSU(2) transformation. For the transformation (4.4) the general
SU(3) transformation (4.7) assumes the simple form

D = D(0, 0, 0, 0, π/2, 0, π/2, 0). (4.9)

Inserting expression (4.9) forD into equation (4.6) provides the necessary expression for
computing the vector phase distribution over the two free parametersθ = (θ1, θ2).

The phase distributions have been calculated using MathematicaTM and are plotted in
figures 2–4. Calculations are performed for the highest-weight state|ss〉 and the balanced
state|s0〉. Surface plots are presented in figure 2 for both the highest-weight state and the
balanced state withs = 12. This choice ofs corresponds to a total of 3s = 36 photons in
the interferometer. The highest-weight state is anSU(3) coherent state [19], and the surface
plot is the two-dimensional phase distribution for this state. The importance of these phase
distributions is that the output state has the same phase distribution as that shown in figure 2
except for a translation in the(θ1, θ2) plane.

In figures 3 and 4 phase distributions are plotted for the highest-weight state and balanced
state, respectively. The sequence of plots are slices of the surface plots corresponding to



Vector phase measurement in MQI 7799

Figure 4. Vector phase distributions for the balanced state|s0〉 for θ1 = 0 and 3s ∈
{24, 36, 48, 60, 90, 120} photons.

fixing θ1 for photon number 3s increasing from 24 to 120. The major peak is used for both
the highest-weight state and the balanced state to infer the imposed phase shift. One way to
analyse the precision of phase-shift estimation is to consider the width of the major peak along
slices of the surface plot. This provides information about the scaling of the precision with
respect to classes of phase shifts along one dimension in the two-dimensional space(θ1, θ2).

The scaling of the width of the phase distribution for theSU(3) coherent state, or highest-
weight state, in figure 3 approaches 1/

√
s. This scaling is consistent with the scaling of

the phase precision forSU(2) coherent states [11]. Slices of the phase distribution for the
balanced state, depicted in figure 4, exhibit a scaling of width which is superior to 1/

√
s (but

not at theSU(2) scaling of 1/s). For SU(3) interferometry, and the configuration depicted
in figure 1(b), theSU(3) balanced state provides a superior phase-shift estimate in terms of
scaling with respect to input photon number.
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5. Conclusions

In conclusion, we have developed theSU(N)VPS. The rotatedSU(N)VPS has proven useful
in estimating bounds to phase-shift measurements. Specifically, theSU(3) vector phase
distribution has been used to observe a 1/

√
s scaling for the highest-weight (or coherent)

state and a superior scaling of phase-shift estimate precision for the balanced input state.
Scaling of phase-shift estimate precision was studied in the context of symmetric MQI, for
which phase-shift measurements and bounds to estimation provide particularly straightforward
mathematical results. We have also clarified the use ofSU(N) vector phase distributions in the
context of the Fisher information matrix for establishing bounds on multiparameter estimation.

We have relied on numerical simulations to studySU(3) two-dimensional phase
distributions and the scaling of the precision of the phase-shift estimates with respect
to photon number 3s. An alternative approach is to employ asymptotic methods for
SU(3) transformations [22]. AsymptoticSU(3) expressions would simplify the study of
measurement limits forSU(3) interferometry, analogous to the asymptotic approach to
studying measurement limits forSU(2) interferometry [11]. We are currently developing
the application of asymptotic methods forSU(3) interferometry.
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